WTTC DISCUSSION PAPER: DATA FACILITATION FOR THE SEAMLESS TRAVELLER JOURNEY

DATA COLLECTED IN Q3 2019

JANUARY 2020
1. INITIATIVE OVERVIEW

THE CHALLENGE

WTTC’s latest annual research, in conjunction with Oxford Economics, shows the Travel & Tourism sector experienced 3.5% growth in 2019, outpacing that of the global economy (2.5%) for the ninth consecutive year. Over the past five years, one in four new jobs were created by the sector, making Travel & Tourism the best partner for governments to generate employment. The industry has long tried to improve security, reduce fraud, and improve the traveller experience. Seamless Traveller solutions enabled through biometrics, provide the mechanism to increase security while enhancing the traveller experience across the air and non-air touchpoints. Additionally, contactless biometric technology can assist in the prevention of pathogens’ transmission between passengers.

THE OPPORTUNITY

Significant technological advances in digital identities continue to enter the marketplace. These technologies enable verified digital identities that use biometrics to confirm, with high certainty, the identity of a user. Applying these solutions to the Travel and Tourism industry offers significant benefits. Verified identities will enable the secure, seamless movement and management of travellers across the air and non-air journeys. Utilizing traveller biographic, biometric, loyalty, credit card, travel history, proof of immunity or vaccine and other personal information will allow governments and travel providers to more efficiently and safely move the traveller through journey touchpoints. Travellers will no longer be required to present and verify their identity and relevant travel (e.g. recently visited countries) and medical history (e.g. vaccine) at multiple touchpoints. The result reduces fraud and allows for the movement of more travellers securely and efficiently through existing infrastructure and easing resource requirements.

WTTC APPROACH

WTTC defined its global vision for the Seamless Traveller Journey as enabling a seamless, safe and secure end-to-end traveller journey encompassing both air and non-air traveller touchpoints. Systematic biometric verified identification at each stage of the journey will replace today’s manual identity verifications. These solutions will capitalize on several opportunities including improving the customer experience, creating a frictionless experience at touchpoints, improving security, health safety, and promoting commercial benefits to travel providers. Significant technological advances, especially in biometrics, have enabled digital identity solutions which are demonstrating strong opportunities to enable verified identities. These verified identities enable the secure, seamless movement and management of travellers across travellers’ air and non-air journey.
THE BENEFITS
It has been well documented that traveler digital identity solutions will alleviate the strain on existing travel infrastructure and facilitate a touchless experience. Beyond infrastructure, there are ample benefits to the public sector, private sector, and the traveler, in addition to the fact that touchless biometrics and contactless passage through security, border control, and boarding offer airports hygiene advantages that mitigate the risk of pathogen transmission.

- **Public sector** – Governments increase their border security while reducing the cost of border crossing operations
- **Private sector** – Companies will increase their security while reducing the demand on infrastructure and resources while improving the customer experience
- **Traveller** – Travelers will be able to book travel, check-in (e.g., airport, hotel, cruise, etc.), proceed through security, cross borders, board aircraft, collect luggage, rent and retrieve cars, and other non-air services, simply using their verified identity by confirming their biometrics

PUBLIC SECTOR
- Increased border security
- Increase border crossing capacity
- Increased health control mechanisms
- Reduced resource requirements (e.g., reduce border crossing personnel)

PRIVATE SECTOR
- Reduced strain on infrastructure
- Increased security
- Increased asset utilization
- Reduced data liability
- Enhance/personalize the customer experience

TRAVELLER
- Enhanced personalized travel experience
- Removal of points of friction
- Security and transparency of personal data usage

2. LATEST PERSPECTIVE: DATA FACILITATION METHODS

INTRODUCTION
This paper provides an update on the progress of WTTC’s STJ initiative and discusses four STJ prototypes which link air and non-air travel. The prototypes are grounded in the work done previously in the Emerging Models report published in Q4 2019. As the prototypes have been defined, key questions have emerged for industry leaders to consider as STJ continues to become a reality.

Several biometric-driven solutions are currently operational around the world. While there have been significant benefits realized in each program, overwhelmingly these solutions have been siloed. Limited interoperability across today’s solutions present the critical need for global best practices to govern information storage, exchange, and partnership across organizations for future state solutions.

Significant learnings are becoming available from those operational solutions. Taking lessons learned and synthesizing them into standardised approaches to more easily facilitate interoperability is critical to success.

PRINCIPLES OF SUCCESS
The industry is at a critical point where biometric digital identity solutions are being designed and developed to serve travelers across the air and non-air touchpoints. The proposed facilitation methods start to define models which facilitate the conversation to answer key questions the industry needs to consider as best practices are developed. These questions align with our four principles of success.
3. DATA FACILITATION METHODS OVERVIEW

As scope expanded to include air and non-air travel, two of the three original emerging models became the backbone of the biometric traveler journey. Per Trip, allows a traveler to create a single journey token in advance via mobile device or in-person at check-in. Following their trip, the token containing the traveler data is purged. Per Life, where travelers enrol once to create a verified digital identity which exists until the traveler decides to purge their digital identity. Government has become a data facilitation method which can facilitate both, the Per Life and Per Trip models.

To enable the Per Trip and Per Life model, traveler data will be stored and shared across multiple stakeholders in the traveler’s journey. We have defined three data facilitation methods to enable this:

1. Centralised: traveler data is stored and managed on a central platform that other travel providers must connect to.
2. Decentralised: traveler data is stored on their mobile device and pushed to travel providers by the traveler.
3. Hybrid: uses both centralised and decentralised methods within a single traveler journey.

FACILITATION TYPE

<table>
<thead>
<tr>
<th>FACILITATION TYPE</th>
<th>DESCRIPTION</th>
<th>EXAMPLE</th>
</tr>
</thead>
</table>
| CENTRALISED | 1. Traveller data is centrally stored and managed by a 3rd party
2. Travel providers connect via secure API connections
3. Two centralised providers:
 • Private Corporation: Traveller actively enrolls their digital identity data which is stored by a 3rd party provider
 • Government: Traveller biographic and biometric (optional) data collected through government issued documents (e.g. passport, eVisa, etc.) | Private Corporation: Clear in the United States
Government: United Arab Emirates uses Smart Gates at certain points of immigration. |
| DECENTRALISED | 1. Digital identity data owned and managed by the traveler and stored in a digital wallet on their mobile device
2. Traveler manages the data that is pushed to chosen stakeholders and when it is sent | Apple Pay, where user manages their information which lives securely on their personal device. At the time of purchase, a user determines when and where to share their information |
| HYBRID | 1. Utilization of multiple technologies and/or facilitation options across stakeholder systems throughout the travel value chain
2. Processes for integration not yet designed, so many options may exist | |

In today’s environment, centralised is the most prominent data storage and facilitation method for biometric driven travel programs. Centralised platforms align with traditional strategies where consumers provide large institutions with personal data and each company owns and manages that data in exchange for customers receiving benefits. But consumers stance on data sharing, transparency, and control is shifting.

Consumers are beginning to demand greater control and transparency of their data. The fundamentals of the decentralised data storage and facilitation method account for this shift, allowing travelers ownership and transparency over how their data is used and shared. However, the reality is certain institutions, such as governments, will always have some form of centralised data facilitation. A Government views the data of their citizens and those visiting paramount to national security and will, therefore, maintain ownership and management of their data. Since government validation of identity will always be a critical component of a travelers journey, the reality is end-state solutions will need to support a hybrid of centralised and decentralised.
4. SEAMLESS TRAVELLER JOURNEY PROCESS

To assist in the definition of each data storage and facilitation method, the following framework is used which breaks down the Seamless Traveller Journey into four steps:
1. Enrolment: Traveller enrolls in a biometric program and upon completion, their Traveller Data Envelope (TDE) is created
2. Pre-travel (booking): Traveller makes purchases and reservations for their journey
3. In-transit: Traveller touchpoints encountered once their trip begins
4. Post-travel: Occurs when the traveller has completed all the touchpoints during their journey

ENROLL
- All enrolment options require capturing traveller information:
 - Biographic data from government issued documents
 - Biometric details to create a verified identity
 - Optional data can be captured such as credit card and loyalty
 - Upon completion of enrolment, traveller’s Data Envelope (TDE) is established

PRE-TRAVEL (BOOKING)
- Traveller can utilise their TDE, verified biometric identity and PII when the traveller begins their booking process (air and non-air travel suppliers)
- Note: Only applicable for travellers who verify their biometrics prior to booking
- Traveller can leverage their TDE to share information such as credit card, biographic information (e.g. address, passport number, etc.) during booking and while in-transit

IN-TRANSIT
- Touchpoints the traveller encounters once they begin their trip
- Touchpoints can include air and non-air components
- Traveller biometrics are verified at several touchpoints to confirm identity and share traveller information required by the travel supplier
- Traveller provides consent throughout their journey to ensure transparency on what data is being shared

POST-TRAVEL
- Components of the biometric life cycle, which being once the traveller has completed some or all portions of their journey
- Decision regarding the storage of the traveller’s data are executed
- Travel suppliers: data shared will be stored and purged per current operating procedures
- Technology platform: TDE will be stored based on enrolled model (Per Trip or Per Life)

5. SEAMLESS TRAVELLER JOURNEY PROTOTYPES

The prototypes developed are meant to facilitate conversation and understanding of how each data facilitation method can be operationalised.

ENROLL
Regardless of the data facilitation method used, travellers will need to first enrol. Enrolment requires the traveller to share biographic information (originating from a government-issued document) and biometric information, which are used to verify the traveller’s identity. The specific traveller data requirements will be defined based on government regulations and type of travel. Additional traveller data can be captured to enhance the benefits of the traveller’s digital identity including address, credit card, loyalty information and others. This traveller data will be stored with other 3rd parties via a Traveller Data Envelope (TDE), and a common framework for the Traveller Digital Envelope will be critical to facilitating future interoperability.

During enrolment, there are three categories of data which will be collected. Depending on the program and the traveller’s preferences the amount of data which is collected may vary:

1. Biographic: solutions require biographic data derived from government issued documents. Biographic data will include the traveller’s name, nationality, date of birth, address, etc. There are two ways a traveller can enrol their biographic data:
 1. ePassport: Travellers who have an ePassport can capture their biographic information from the chip leveraging the current work of the ICAO Digital Traveller Credential (DTC) program. Using NFC technology, a traveller can access their biographic data stored on the ePassport chip. Utilizing the DTC has several benefits. First, it provides travellers with a seamless way to register their biographic information. Second, the data is government authenticated information which cannot have been previously tampered. Lastly, it is widely trusted across governments around the world.
 2. Other government issued identifications: In instances where travellers do not have an ePassport, biographic data can be collected utilizing other government issued documents (e.g. driver license, visa, etc.). When uploaded, these documents will be authenticated using advanced technologies to ensure the highest level of trust and accuracy.

2. Biometric: mobile enrolment will initially capture facial biometrics and use liveliness detection technology for authentication, kiosk enrolment may capture facial, iris, and fingerprint biometrics.

 Note: Travellers using mobile enrolment may be required to capture a secondary biometric during travel based on government regulations.

3. Other personal data: to maximize the benefits of digital identity, travellers may choose to upload additional personal data such as loyalty, credit card, travel history, and travel preferences, etc.

Enrolment can be passive (i.e. government-mandated) or active (i.e. traveller initiated). Depending on the biometric digital identity solution, travellers will have three active enrolment options: mobile enrolment, on-site enrolment, and a combination of mobile and on-site enrolment.
To provide additional context and illustrate how data facilitation methods can be operationalised, we developed four prototypes each aligned to a different facilitation method. The details of each scenario differ in scope to illustrate the broad applications of a Seamless Traveller journey solution.

<table>
<thead>
<tr>
<th>PROTOTYPE</th>
<th>ACTIVITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTRALISED</td>
<td>Booking process</td>
</tr>
<tr>
<td></td>
<td>Private corporation</td>
</tr>
<tr>
<td></td>
<td>Government</td>
</tr>
<tr>
<td>DECENTRALISED</td>
<td>✓</td>
</tr>
<tr>
<td>HYBRID</td>
<td>✓</td>
</tr>
</tbody>
</table>

- **Mobile enrolment**
 - Enrolment can occur pre-travel or during their journey
 - Traveller enrols using a personal device (e.g. mobile)
 - Traveller uploads their biographic data from a government issued document using NFC technology (e.g. ePassport), facial biometrics via a selfie and liveliness detection
 - Traveller may upload additional personal information

- **On-site enrolment**
 - Enrolment can occur pre-travel or during their journey
 - Traveller enrols using a kiosk or other terminal at a touchpoint along the traveller journey (e.g. airport, hotel, car rental facility, etc.)
 - Traveller uploads biographic data from a government issued document using NFC technology (e.g. ePassport) and biometrics (facial, finger, or iris)
 - Traveller may upload additional personal information

- **Mobile and on-site enrolment**
 - Enrolment can occur pre-travel or during their journey
 - Traveller enrols using a personal device (e.g. mobile)
 - Using a kiosk or other terminal along the traveller journey the traveller either:
 - Enhances their TDE with additional information (e.g. adds secondary biometrics)
 - Completes enrolment by adding missing required data

- **Passive enrolment**
 - No traveller action required
 - Typically used by government platforms which collect biographic and from existing databases or collection at touchpoints controlled by the government such as border crossing
6. CENTRALISED

OVERVIEW
The centralised method is the storage and management of traveller’s data by a 3rd party. The provider can be either a private corporation or government. In both cases, travel providers along the traveller journey connect to the centralised platforms to receive data and messages. The main difference between a program managed by a private corporate versus a government is the enrolment method. For a private corporate the traveller actively enrols in the program, whereas for government-managed platforms the traveller’s data is automatically stored.

CENTRALISED – PRIVATE CORPORATION
- Name: Morgan
- Trip overview: Domestic point to point; air and car rental.

Traveller perspective: Morgan arrives at the airport and uses her verified identity to confirm check-in and retrieve baggage tags. Upon boarding, Morgan uses an eGate procedure where her photo is taken and matched with digital identity on her Traveller Data Envelope (TDE). When arriving at her destination, Morgan proceeds to the rental car facility and obtains her car and confirms her identity using biometrics upon departure. Upon identity verification, the rental car company receives required information (e.g. driver’s license number and credit card number) from the TDE. Morgan is cleared to depart.

Facilitation perspective: Travel providers across the traveller journey connect to a centralised database which holds Morgan’s Traveller Data Envelope. At each touchpoint in the journey, Morgan consents and verifies her identity which is matched to her envelope on the centralised database. Lastly, for travel providers who require additional information to complete the check-in process, that is sent securely from Morgan’s data envelope to the travel provider.

CENTRALISED PROTOTYPE SCENARIO – PRIVATE CORPORATION

<table>
<thead>
<tr>
<th>TRAVELLER</th>
<th>GOVERNMENT / IMMIGRATION</th>
<th>TECH PROVIDER</th>
<th>AIRLINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traveller arrives at airport</td>
<td>Live biometrics checked against TDE data on the orchestration platform</td>
<td>Trust decision returned to travel provider system</td>
<td>Traveller data is captured by airline for required documentation processing (e.g. APIs)</td>
</tr>
<tr>
<td>Traveller provides consent and scans biometrics</td>
<td>Trust decision returned to travel provider system</td>
<td>Trust decision returned to travel provider system</td>
<td>Trust decision returned to travel provider system and traveller is added to passenger manifest</td>
</tr>
<tr>
<td>Traveller approaches eGate and scans biometrics</td>
<td>Traveller authenticated and check-in process executed</td>
<td>Traveller data request is received and sent to travel provider</td>
<td></td>
</tr>
<tr>
<td>Traveller approaches eGate and scans biometrics</td>
<td>Travel provider requires additional traveller data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traveller approaches eGate and scans biometrics</td>
<td>Data received is stored on guest record</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CENTRALISED PROTOTYPE SCENARIO – PRIVATE CORPORATION

<table>
<thead>
<tr>
<th>TRAVELLER</th>
<th>CAR RENTAL AND HOTEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traveller arrives at rental car and hotel</td>
<td>Traveller cleared to depart with car/receives hotel room key</td>
</tr>
<tr>
<td>Traveller provides consent and scans biometrics</td>
<td>Traveller data is captured by airline for required documentation processing (e.g. APIs)</td>
</tr>
<tr>
<td>Traveller data request is received and sent to travel provider</td>
<td>Trust decision returned to travel provider system and traveller is added to passenger manifest</td>
</tr>
<tr>
<td>Traveller authenticated and required data is confirmed (e.g. drivers license and credit card, etc.)</td>
<td></td>
</tr>
</tbody>
</table>

Car rental

Car rental
CENTRALISED – GOVERNMENT

- Name: Olivia
- Trip overview: International journey; air only

Traveller perspective: Twenty-four hours before departure the government platform sends a gallery package to the airline which Olivia will be using for her trip. When Olivia arrives at her departure gate she opts-in to using the eGate to board her flight. Olivia presents herself in front of the eGate boarding device which takes a picture of her face and matches it to the gallery provided by the government platform. Upon arriving back in her home country, Olivia opts-in to the biometric immigration process, which validates her identity using facial recognition confirms her identity to her profile on the government platform.

Facilitation perspective: Twenty-four hours before departure, an airline will send their passenger list to the government platform for a passenger gallery to be created. Upon boarding, the passenger’s biometrics are matched with the gallery on the government platform. At a border crossing, the traveller shares their biometrics which is matched to their profile on the government platform.

CENTRALISED PROTOTYPE SCENARIO – PRIVATE CORPORATION

AIR AND BORDER CROSSING

<table>
<thead>
<tr>
<th>TRAVELLER</th>
<th>GOVERNMENT / IMMIGRATION</th>
<th>AIRLINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>traveller approaches to board and scans biometrics</td>
<td>Government creates a gallery of passengers for upcoming flight</td>
<td>Airline sends passenger list to request gallery for upcoming flight</td>
</tr>
<tr>
<td>traveller enters exceptions processing</td>
<td>Live biometrics matched against government platform</td>
<td>Boarding confirmed and traveller is added to passenger manifest</td>
</tr>
<tr>
<td>traveller cleared to board flight</td>
<td>Traveller authenticated?</td>
<td></td>
</tr>
<tr>
<td>traveller arrives back at home country border crossing and scans biometrics</td>
<td>Live biometrics matched against government platform</td>
<td></td>
</tr>
<tr>
<td>Traveller cleared to the country</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

KEY QUESTIONS

- With multiple centralised solutions existing, will travel providers take the burden of connecting multiple centralised platforms or will travel providers be forced to participate in multiple STJ solutions?
- Are governments willing and able to share information from their platforms with other governments and the private sector to allow a global seamless end-to-end cross border journey?

7. DECENTRALISED

OVERVIEW

Decentralised digital identities put ownership and management into the hands of the traveller. Traveller data is stored in their personal Traveler Data Envelope (TDE) and stored and managed on their device (e.g. mobile). Connections to travel providers can occur in two ways:

1. **Direct connection**: Travel providers develop connections with the digital identity platform which facilitates the transfer of traveller data
2. **Trip token**: For a given trip, tokens are generated and stored on a digital identity platform hosted by a 3rd party which connects to travel providers. In these instances, the token follows the Per Trip model, with traveller data being purged after their journey.

When a traveller encounters a point in their journey where their digital identity can be leveraged, they are presented with the opportunity to share data or a message to the travel provider. The traveller will be presented with what information is being requested and by whom. In addition to travel information being sent to travel providers, where appropriate travellers will have the ability to share zero knowledge messages which allow travel providers verification of existing data without the liability of receiving the data. It will be the decision of the traveller whether consent to sharing the requested information. The traveller will also be in control of when the life of their digital identity ends and purging the data.

PROTOTYPE SCENARIO

- Name: Matthew
- Trip overview: Domestic point to point journey; air and hotel

Traveller perspective: During the booking process, Matthew sends all required information (for each travel stakeholder) from his digital identity via his mobile device. This allows Matthew to share his confirmed identity, loyalty information, credit card, and other required information to complete his reservation. Upon arrival at the airport, he scans a unique QR code to confirm his identity at airport check-in. After clearing the security checkpoint, Matthew enters the airline lounge. To enter the lounge, Matthew pushes a verified zero-knowledge message which confirms his lounge access (this message confirms that Matthew’s digital identity confirmed his identity, flight information, and club membership number). While in the airport lounge, Matthew using his mobile device to check-in to the hotel pushing a message confirming his identity and tokenised credit card number for incidentals. Upon the hotel’s receipt of the information, Matthew receives his mobile key allowing him to proceed directly to his room upon arrival at the hotel.

Facilitation perspective: Travel providers connect to a decentralised platform which allows the traveller to control the triggering of data throughout touchpoints in the traveller journey. At each touchpoint in the journey, the traveller will verify their identity on their mobile device and either share verified identity messages, required data, or zero-knowledge messages.
DECENTRALISED PROTOTYPE SCENARIO

BOOKING

- **TRAVELLER**
 - Traveller begins to book their travel for air, car and hotel.
 - Traveller logs into their TDE using their biometrics.
 - Traveller gives consent for requested data to be shared with each travel provider.
 - Traveller receives confirmation number and trip details.

- **TECH PROVIDER**
 - Traveller makes booking decisions and travel provider requests traveller data from their TDE.
 - Live biometrics checked against TDE data on the orchestration platform.
 - Traveller data provided to each travel provider.
 - Only the required data is stored by each travel provider on the traveller’s confirmation, while other received information is purged.

- **HOTEL**
 - Traveller makes booking decisions and travel provider requests traveller data from their TDE.
 - Traveller logs into their TDE using their biometrics.
 - Traveller gives consent for requested data to be shared with each travel provider.
 - Traveller receives confirmation number and trip details.

- **CAR RENTAL**
 - Traveller makes booking decisions and travel provider requests traveller data from their TDE.
 - Traveller logs into their TDE using their biometrics.
 - Traveller gives consent for requested data to be shared with each travel provider.
 - Traveller receives confirmation number and trip details.

- **AIRLINE**
 - Traveller makes booking decisions and travel provider requests traveller data from their TDE.
 - Traveller logs into their TDE using their biometrics.
 - Traveller gives consent for requested data to be shared with each travel provider.
 - Traveller receives confirmation number and trip details.

DECENTRALISED PROTOTYPE SCENARIO

AIR

- **TRAVELLER**
 - Traveller arrives at airport.
 - Traveller approaches check-in, and scans biometrics.
 - Traveller authentication message and required data sent to airline.
 - Traveller shares authenticated identity.
 - Traveller cleared to enter the lounge.

- **TECH PROVIDER**
 - Live biometrics checked against TDE data on the orchestration platform.
 - Traveller authentication message and required data sent to airline.
 - Traveller authentication message and required data sent to airline.

- **AIRLINE**
 - Check-in in progress executed.
 - Traveller data is captured by airline for required documentation processes and luggage tags are provided (e.g. APIs).

KEY QUESTIONS

To enable the traveller to own and facilitate their data with travel providers, critical solution design questions need to be addressed. Two distinct options should be discussed:

- Is the travel industry open to establishing secure connections to trusted 3rd party providers to create a meaningful ecosystem (e.g. each solution has enough travel providers reducing the number of Seamless Traveller Journey solutions a traveller must enroll)?
- Secure processing and transmission of data are critical to the success of any solution, what are the common standards for how data is processed and transmitted between a Traveller’s Data Envelope and travel providers?
8. HYBRID

OVERVIEW
The hybrid option is the most likely to be used in the end state. It combines all the functionality of the centralised and decentralised storage and management methods. The flexibility to utilize a centralised and decentralised platform in a single journey allows each stakeholder to partake in a biometric traveller program. In the end state, this flexibility will be required since the reality of the situation is certain stakeholders, such as a government, will always maintain a centralised platform. While other stakeholders, such as travel providers, are willing to remove the data liability and pass it back to the traveller via a decentralised platform.

PROTOTYPE SCENARIO
- Name: Ross
- Trip overview: International; air, car and hotel
- Data storage and facilitation methods: centralised (private corporation and government) and decentralised

Traveller perspective: During the booking process, Ross sends all the required information (for each travel stakeholder) from his digital identity via his mobile device. To obtain his visa, Ross applied for an electronic visa with the visiting nation. When Ross arrives at the airport, he verified his identity on his mobile device and used his verified identity to check-in. When Ross arrives at his destination airport and enters immigration, he uses his biometrics to confirm his identity and retrieve his electronic visa. After immigration, Ross receives his car and is cleared to depart by sharing a zero-knowledge message confirming his identity, and valid driver license. When arriving at the hotel, Ross’s facial image is captured at the check-in counter. Ross’s face is matched with his profile, at which point his identity is verified and credit card information is shared with the hotel. Twenty-four hours prior to departure for Ross’s return trip, the government platform sends a gallery package to the airline which Ross will be a passenger. When Ross arrives at his departure gate he opts-in to using the eGate to board the flight. Ross presents himself in front of the eGate boarding device which takes a picture of his face and matches it to the gallery provided by the government platform. Upon arriving back in his home country, Ross opts-in to biometric immigration process, which validates his identity using facial recognition confirms his identity with his profile on the government platform.

Facilitation perspective: Utilizing both centralised and decentralised solutions, depending on the touchpoint the traveller encounters. The traveller will control the triggering of their data to travel providers at certain touchpoints, while others such as border crossings, will continue to leverage centrally stored data.
HYBRID PROTOTYPE SCENARIO - AIR AND BORDER CROSSING

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traveller arrives at airport</td>
<td>Traveller scans biometrics to check-in</td>
</tr>
<tr>
<td></td>
<td>Traveller shares authenticated identity and required data</td>
</tr>
<tr>
<td></td>
<td>Traveller passes eVisa existence verification</td>
</tr>
<tr>
<td></td>
<td>Live biometrics checked against TDE data on the orchestration platform and visa or electronic travel authorisation is confirmed</td>
</tr>
<tr>
<td></td>
<td>Traveller data is captured by airline for required documentation processes and luggage tags are provided (e.g. APIs)</td>
</tr>
<tr>
<td></td>
<td>Traveller enters air and border crossing</td>
</tr>
<tr>
<td></td>
<td>Traveller is cleared to enter the country</td>
</tr>
</tbody>
</table>

HYBRID PROTOTYPE SCENARIO - GOVERNMENT / IMMIGRATION

<table>
<thead>
<tr>
<th>Decision</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traveler enters flight</td>
<td>Government creates a gallery of passengers for upcoming flight</td>
</tr>
<tr>
<td></td>
<td>Traveler enters airport and scans biometrics</td>
</tr>
<tr>
<td></td>
<td>Traveler enters exception processing</td>
</tr>
<tr>
<td>Yes</td>
<td>Traveler is cleared to board flight</td>
</tr>
<tr>
<td>No</td>
<td>Traveler is not cleared to board flight</td>
</tr>
<tr>
<td></td>
<td>Live biometrics matched against government platform</td>
</tr>
</tbody>
</table>

HYBRID PROTOTYPE SCENARIO - CAR RENTAL AND HOTEL

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traveller arrives at rental car and hotel</td>
<td>Traveller approaches check-in and scans biometrics</td>
</tr>
<tr>
<td></td>
<td>Traveller shares authenticated identity</td>
</tr>
<tr>
<td></td>
<td>Traveler data request is received and sent to travel provider</td>
</tr>
<tr>
<td>Yes</td>
<td>Traveler is authenticated and required data is confirmed (e.g. drivers license and credit card, etc.)</td>
</tr>
<tr>
<td>No</td>
<td>Traveler data requires additional travel provider data</td>
</tr>
<tr>
<td></td>
<td>Data received is stored on guest record</td>
</tr>
<tr>
<td></td>
<td>Live biometrics checked against TDE data on the orchestration platform</td>
</tr>
<tr>
<td></td>
<td>Live biometrics checked against TDE data on the orchestration platform and visa or electronic travel authorisation is confirmed</td>
</tr>
<tr>
<td></td>
<td>Check-in process executed</td>
</tr>
<tr>
<td></td>
<td>Traveller data is captured by airline for required documentation processes and luggage tags are provided (e.g. APIs)</td>
</tr>
<tr>
<td></td>
<td>Traveller enters air and border crossing</td>
</tr>
<tr>
<td></td>
<td>Traveller is cleared to enter the country</td>
</tr>
</tbody>
</table>

KEY QUESTION

- How does the Travel and Leisure industry avoid a multitude of solutions for each portion of the traveler journey? For example, a traveler flying on Lufthansa, via Heathrow airport, to the United States and renting a car with Hertz will need to enrol in three programs: a Star Alliance solution, a Heathrow airport-specific solution, and Hertz’s solution with Clear for a biometric journey across all touchpoints.
9. CONCLUSION

The demand by traveller’s for biometric digital identity solutions continues to grow. Combine the growth in demand, rapid evolution of technology, and data and biometric regulation in its infancy, the travel industry is at a critical junction. It is critical for the travel industry to consider these five areas to ensure long-term success of an end-to-end STJ ecosystem.

10. NEXT STEPS

Given the viability of each model identified to achieve an end-to-end seamless and secure traveller journey, WTTC will undertake the following next steps to advance the initiative:

- Capture information about how government and travel provider requirements shift post Coronavirus (COVID-19) and define how a digital identity with biometrics enables the solutions.
- Evaluate the privacy and data sharing implications of the models and further analyse the attributes of the STJ.
- Provide progress reports with next steps around data privacy, traveller data envelope best practices, standards, and minimum data requirements.
- Build alignment across stakeholders while driving the execution and evaluation of global end-to-end round-trip air and non-air pilots.
- Document and quantify the benefits of an end-to-end Seamless Traveller Journey.
- Continue to build on the efforts underway with organisations such as the International Air Transport Association (IATA), The International Border Management and Technologies Association (IBMTA), International Civil Aviation Organization (ICAO), Airports Council International (ACI), CLIA and the World Economic Forum (WEF) as well as independent efforts by airlines, airports and governments.

ACKNOWLEDGEMENTS

This report was prepared by the World Travel & Tourism Council (WTTC) in collaboration with its Knowledge Partner Oliver Wyman.

The authors of the report would like to thank the representatives from the following companies and associations, who participated in the interviews and related workshops, in alphabetical order:

- AMADEUS IT GROUP
- AIRPORT COUNCIL INTERNATIONAL (ACI)
- AVIS
- CARNIVAL CORPORATION
- CLEAR
- CRUISE LINES INTERNATIONAL ASSOCIATION (CLIA)
- CONSIDERATI – LEGAL CONSULTANT
- DALLAS FORT WORTH INTERNATIONAL AIRPORT
- EMIRATES GROUP
- HILTON
- INTERNATIONAL AIR TRANSPORT ASSOCIATION (IATA)
- IBM
- MSC CRUISES
- OPEN TRAVEL ALLIANCE (OTA)
- ROYAL CARIBBEAN CRUISES
- SITA
- VISION-BOX
- WORLDREACH SOFTWARE

ABOUT OLIVER WYMAN

Oliver Wyman works with the world’s leading travel and leisure companies, including hotels, airlines, passenger rail and bus operators, theme parks, cruise operators, gaming and lottery companies, tour operators and travel agencies, travel technology companies, airports, rail stations, and concessionaires, as well as private equity firms. The firm has more than 4,700 professionals around the world and draws on deep industry expertise and specialised capabilities to develop growth strategies and operational excellence initiatives with its clients to transform their business.

Oliver Wyman is a trusted advisor to the World Travel and Tourism Council advising on its growth strategy, and has been directly supporting the development of the Seamless Traveller Journey programme. Oliver Wyman is a wholly owned subsidiary of Marsh & McLennan Companies [NYSE: MMC].
The World Travel & Tourism Council is the global authority on the economic and social contribution of Travel & Tourism.

WTTC promotes sustainable growth for the Travel & Tourism sector, working with governments and international institutions to create jobs, to drive exports and to generate prosperity. Council Members are the Chairs, Presidents and Chief Executives of the world’s leading private sector Travel & Tourism businesses.

Together with Oxford Economics, WTTC produces annual research that shows Travel & Tourism to be one of the world’s largest sectors, supporting 330 million jobs and generating 10.3% of global GDP in 2019. Comprehensive reports quantify, compare and forecast the economic impact of Travel & Tourism on 185 economies around the world. In addition to individual country fact sheets, and fuller country reports, WTTC produces a world report highlighting global trends and 25 further reports that focus on regions, sub-regions and economic and geographic groups.

To download reports or data, please visit www.wttc.org

ACKNOWLEDGEMENTS

Gloria Guevara
President & Chief Executive Officer
World Travel & Tourism Council

Scot Hornick
Partner, Transportation and Travel
Oliver Wyman

Mike Matheis
Global Industry Association, Civic and Economic Organization Lead
Oliver Wyman

EDITORS

Helena Bononi
Vice-President Membership & Commercial
World Travel & Tourism Council

Lawrence Burka
Associate
Oliver Wyman